Scientists Develop 'Space Bricks' for Construction on Mars

An illustration of NASA’s “Perseverance” rover casting off its spacecraft’s cruise stage, minutes before entering the Martian atmosphere, photo obtained on Feb. 15, 2021. (NASA Handout via AFP)
An illustration of NASA’s “Perseverance” rover casting off its spacecraft’s cruise stage, minutes before entering the Martian atmosphere, photo obtained on Feb. 15, 2021. (NASA Handout via AFP)
TT

Scientists Develop 'Space Bricks' for Construction on Mars

An illustration of NASA’s “Perseverance” rover casting off its spacecraft’s cruise stage, minutes before entering the Martian atmosphere, photo obtained on Feb. 15, 2021. (NASA Handout via AFP)
An illustration of NASA’s “Perseverance” rover casting off its spacecraft’s cruise stage, minutes before entering the Martian atmosphere, photo obtained on Feb. 15, 2021. (NASA Handout via AFP)

In collaboration with the Indian Space Research Organization (ISRO), a team of researchers from the Indian Institute of Science (IISc) has developed a sustainable method for making bricks out of Martian soil, using bacteria and urea.

These “space bricks” can be used to construct building-like structures on Mars that could facilitate human settlement on the red planet.

The method for making these space bricks has been outlined in a study published in the journal PLOS One.

A slurry is first created by mixing Martian soil with guar gum, a bacterium called Sporosarcina pasteurii, urea and nickel chloride (NiCl2). This slurry can be poured into molds of any desired shape, and over a few days the bacteria convert the urea into crystals of calcium carbonate. These crystals, along with biopolymers secreted by the microbes, act as cement holding the soil particles together.

An advantage of this method is the reduced porosity of the bricks, which has been a problem with other methods used to consolidate Martian soil into bricks, says Aloke Kumar, associate professor in the Department of Mechanical Engineering at IISc, one of the senior authors of the paper.

The research group had previously worked on making bricks out of lunar soil, using a similar method. However, the previous method could only produce cylindrical bricks, while the current slurry-casting method can also produce bricks of complex shapes.

The slurry-casting method was developed with the help of Koushik Viswanathan, assistant professor in the Department of Mechanical Engineering, IISc, whose lab works on advanced manufacturing processes. In addition, extending the method to Martian soil proved challenging.

“Martian soil contains a lot of iron, which causes toxicity to organisms. In the beginning, our bacteria did not grow at all. Adding nickel chloride was the key step in making the soil hospitable to the bacteria,” explains Kumar.

The group plans to investigate the effect of Mars’ atmosphere and low gravity on the strength of the space bricks. The Martian atmosphere is 100 times thinner than Earth’s atmosphere, and contains over 95% carbon dioxide, which may significantly affect bacterial growth.

The researchers have constructed a device called MARS (Martian AtmospheRe Simulator), which consists of a chamber that reproduces the atmospheric conditions found on Mars in the lab. The team has also developed a lab-on-a-chip device that aims to measure bacterial activity in micro-gravity conditions.

“The device is being developed keeping in mind our intention to perform experiments in micro-gravity conditions in the near future. With ISRO’s help, the team plans to send such devices into space, so that they can study the effect of low gravity on the bacterial growth,” explains Rashmi Dikshit, a co-author of the study.

“I'm so excited that many researchers across the world are thinking about colonizing other planets. It may not happen quickly, but people are actively working on it,” says Kumar.



Ancient Egyptian Coffin Given New Life in Britain

Staff at Swansea University welcome back the artifact. Photo: Swansea University
Staff at Swansea University welcome back the artifact. Photo: Swansea University
TT

Ancient Egyptian Coffin Given New Life in Britain

Staff at Swansea University welcome back the artifact. Photo: Swansea University
Staff at Swansea University welcome back the artifact. Photo: Swansea University

An ancient Egyptian coffin was given a new life after it has been returned to Swansea University's Egypt Center in Wales.

The artifact, believed to date from about 650 BC, is now back at the university after thousands of hours of conservation work at Cardiff University, where it was painstakingly cleaned, reconstructed and consolidated to prevent it from deteriorating further, according to BBC.

The coffin, originally made for a man called Ankhpakhered in the Greek city of Thebes, was transported back under the watchful eye of the center’s curator Dr. Ken Griffin.

Staff described the finished project as “beyond our wildest dreams.”

“The coffin was gifted to us by Aberystwyth University in 1997 but details about its history are sketchy,” Griffin said.

He added: “It actually ended up being used as a storage box at one time, with other Egyptian objects placed in it for safekeeping.”

The university’s Phil Parkes explained that the wooden coffin was covered in textile and then had a thin layer of decorated plaster over the top.

He said: “Much of that textile had become detached over time and was just hanging loose.”

Parkes added that the separate wooden head was detached and there were a couple of large pieces of wood missing, the side of the base had fallen off and it was in a very sorry condition overall.