Mysterious Stone Secrets in Saudi Arabia Uncovered

Mysterious stone structures known as ‘Mustatil’ in northwestern Saudi Arabia, are among the oldest archeological ruins in the world
Mysterious stone structures known as ‘Mustatil’ in northwestern Saudi Arabia, are among the oldest archeological ruins in the world
TT
20

Mysterious Stone Secrets in Saudi Arabia Uncovered

Mysterious stone structures known as ‘Mustatil’ in northwestern Saudi Arabia, are among the oldest archeological ruins in the world
Mysterious stone structures known as ‘Mustatil’ in northwestern Saudi Arabia, are among the oldest archeological ruins in the world

KAUST scientists have used deep learning algorithms to accelerate the examination of thousands of years old, giant, stone rectangles in the Saudi desert.

“An international study showed that the huge, mysterious stone structures known as ‘Mustatil’ (Arab word for ‘Rectangle’) in northwestern Saudi Arabia, are among the oldest archeological ruins in the world,” Saudi Minister of Culture, Prince Badr bin Abdullah bin Farhan, said in a tweet in 2021.

These historic sites, which are around 7,000 years old, bewildered researchers and scientists who have long sought to determine their nature and the reasons behind their construction. A recent study by the University of Cambridge suggested that these huge structures, comprising chambers, entrances, and seats, are more complicated than expected.

‘Smart’ archeological survey

For quicker results, researchers at the King Abdullah University of Science and Technology (KAUST) have used an artificial intelligence network to carry out a detailed geological survey in the region, which hasn’t been sufficiently studied so far.

The team is composed of Dr. Silvio Giancola, researcher at KAUST’s Image and Video Understanding Lab (IVUL) and the Artificial Intelligence Initiative; Dr. Laurence Hapiot, archaeological research and cultural outreach fellow at KAUST; and Prof. Bernard Ghanem, IVUL senior researcher, and vice president of the Artificial Intelligence Initiative. The project is funded by the president bureau, dean bureau, and IVUL at KAUST.

AI tools are among the best methods used to assess archaeological sites and process general archaeological data, especially when it comes to spatial analyses such as the view field, which can be highly complicated without computers.

Rectangles of the desert

In 2020, the Saudi Heritage Commission announced that a scientific team discovered stone structures in the Nefud Desert, and identified the discovery as the oldest animal traps in the world, dating to 7,000 years.

According to the commission, the findings confirmed that the northern regions of the kingdom witnessed a cultural evolution in around 5,000 years BC. At the time, inhabitants built hundreds of large, stone constructions, which indicates cultural advancement in the region.

The fieldwork explored the archeological and environmental contexts of the stone constructions, especially the rectangle-shaped structure described as animal traps. These stone rectangles played a similar role and reflected a behavioral evolution that suggests a competition over pastures in complex, unstable environments in the Arabian Peninsula, even in periods of humidity like the Holocene era, during which people struggled with drought.

New research field

Inspired by a new research field known as ‘Computational archaeology’, this initiative used an AI software to model the exploration of stone structures with the help of satellites images.

Computational archaeology uses accurate, computer-based analytical methods including geographical information systems (GIS) to study data on long-term human behavior and behavioral evolution. Over more than a decade, archaeologists used available sources to manually analyze satellite images, and tools like Google Maps to search for possible archaeological sites.

In this project, KAUST’s researchers used automation to scan the unfamiliar, large rectangular stones in the Saudi Nefud Desert, in addition to other archaeological sites of circular and triangular shapes. The approach relies on machine learning algorithms fed with data sorted by Dr. Hapiot. Once the algorithms were trained, scientists became able to filter hundreds of similar characteristics on a wide scale. Now, when archaeologists discover a new structure, they can use the tool to convert similar pixels into geodetic data via GPS, and then combine results in a digital map and database for analysis.

“This demonstrates that KAUST is a unique research facility that excels in different faculties. Few environments can achieve an accelerated integration of deep, technical approaches like Artificial Intelligence in cooperation with archaeologists. This helped reach a different understanding of Nefud’s stone structures,” said Hapiot.

The extensively studied field in Nefud features thousands of massive, stone structures. Given that Saudi Arabia’s area is approximately two million square kilometers, geological surveys using conventional research operations and exploration methods could take months, or maybe years. But the new AI-based approach used by KAUST’s team took only five hours.

Commenting on the modern techniques used in this field, Dr. Jaser Suleiman al-Harbash, executive director of the Saudi Heritage Commission, said: “AI and machine learning processed huge sets of data from the Saudi archeological sites with an amazing speed. The commission hails the efforts made by KAUST to use the latest techniques in studying those ancient, stone structures. This can help us find more about the stones’ function and distribution, as well as the ancient civilization that built them.”

In addition to accelerating archaeological exploration, the new technique could provide answers to many questions about the size, capacity, and distribution of the stones, as well as determining whether exploring an ancient structure in a given region can help find other similar or linked structures in neighboring regions.

Other benefits

The benefits of the new deep learning technique used by KAUST are not limited to exploring archaeologic sites, as they can also help achieve the Vision 2030 goals, by preserving and documenting the unique heritage of Saudi Arabia, and promoting tourism. The new technique can be used in other regions with similar soil characteristics and topography. An initiative should be launched to help enhance the benefits of AI in archaeology, so archaeologists and data scientists can exchange their knowledge and achieve promising results.

Archaeology studies the whole activity of our ancestors in a given place and time. These activities include the tools made by humans to meet basic needs, construction, social and economic behaviors, written texts and architecture, and artistic and scientific works.

Archaeology also focuses on studying the origins of human civilizations, using the latest techniques that analyze the tiniest details related to our ancestors. The second half of the 20th century saw the emergence of the “New Archaeology” term, which indicates studying the organization of human communities in their locations, and defining their social structure in order to connect all these findings in a universal system on human behavior.



Plastics Are Seeping into Farm Fields, Food and Eventually Human Bodies. Can They Be Stopped?

Alexandra Water Warriors volunteers cleanup the Juksei river in the heart of Alexandra township from plastic pollution in Johannesburg, South Africa, Nov. 27, 2024. (AP)
Alexandra Water Warriors volunteers cleanup the Juksei river in the heart of Alexandra township from plastic pollution in Johannesburg, South Africa, Nov. 27, 2024. (AP)
TT
20

Plastics Are Seeping into Farm Fields, Food and Eventually Human Bodies. Can They Be Stopped?

Alexandra Water Warriors volunteers cleanup the Juksei river in the heart of Alexandra township from plastic pollution in Johannesburg, South Africa, Nov. 27, 2024. (AP)
Alexandra Water Warriors volunteers cleanup the Juksei river in the heart of Alexandra township from plastic pollution in Johannesburg, South Africa, Nov. 27, 2024. (AP)

In Uganda's Mbale district, famous for its production of arabica coffee, a plague of plastic bags locally known as buveera is creeping beyond the city.

It's a problem that has long littered the landscape in Kampala, the capital, where buveera are woven into the fabric of daily life. They show up in layers of excavated dirt roads and clog waterways. But now, they can be found in remote areas of farmland, too. Some of the debris includes the thick plastic bags used for planting coffee seeds in nurseries.

Some farmers are complaining, said Wilson Watira, head of a cultural board for the coffee-growing Bamasaba people. “They are concerned – those farmers who know the effects of buveera on the land,” he said.

Around the world, plastics find their way into farm fields. Climate change makes agricultural plastic, already a necessity for many crops, even more unavoidable for some farmers.

Meanwhile, research continues to show that itty-bitty microplastics alter ecosystems and end up in human bodies. Scientists, farmers and consumers all worry about how that's affecting human health, and many seek solutions. But industry experts say it’s difficult to know where plastic ends up or get rid of it completely, even with the best intentions of reuse and recycling programs.

According to a 2021 report on plastics in agriculture by the United Nations Food and Agriculture Organization, soils are one of the main receptors of agricultural plastics. Some studies have estimated that soils are more polluted by microplastics than the oceans.

“These things are being released at such a huge, huge scale that it’s going to require major engineering solutions,” said Sarah Zack, an Illinois-Indiana Sea Grant Great Lakes Contaminant Specialist who communicates about microplastics to the public.

Micro-particles of plastic that come from items like clothes, medications and beauty products sometimes appear in fertilizer made from the solid byproducts of wastewater treatment — called biosolids — which can also be smelly and toxic to nearby residents depending on the treatment process used. Some seeds are coated in plastic polymers designed to strategically disintegrate at the right time of the season, used in containers to hold pesticides or stretched over fields to lock in moisture.

But the agriculture industry itself only accounts for a little over three percent of all plastics used globally. About 40% of all plastics are used in packaging, including single-use plastic food and beverage containers.

Microplastics, which the National Oceanic and Atmospheric Administration defines as being smaller than five millimeters long, are their largest at about the size of a pencil eraser. Some are much smaller.

Studies have already shown that microplastics can be taken up by plants on land or plankton in the ocean and subsequently eaten by animals or humans. Scientists are still studying the long-term effects of the plastic that's been found in human organs, but early findings suggest possible links to a host of health conditions including heart disease and some cancers.

Despite “significant research gaps,” the evidence related to the land-based food chain “is certainly raising alarm,” said Lev Neretin, environment lead at the FAO, which is currently working on another technical report looking deeper into the problem of microplastic pollution in soils and crops.

A study out this month in the Proceedings of the National Academy of Sciences found that microplastics pollution can even impact plants' ability to photosynthesize, the process by which they turn light from the sun into energy. That doesn't “justify excessive concern” but does “underscore food security risks that necessitate scientific attention,” wrote Fei Dang, one of the study's authors.

The use of plastics has quadrupled over the past 30 years. Plastic is ubiquitous. And most of the world's plastic goes to landfills, pollutes the environment or is burned. Less than 10% of plastics are recycled.

At the same time, some farmers are becoming more reliant on plastics to shelter crops from the effects of extreme weather. They're using tarps, hoop houses and other technology to try to control conditions for their crops. And they're depending more on chemicals like pesticides and fertilizers to buffer against unreliable weather and more pervasive pest issues.

“Through global warming, we have less and less arable land to make crops on. But we need more crops. So therefore the demand on agricultural chemicals is increasing,” said Ole Rosgaard, president and CEO of Greif, a company that makes packaging used for industrial agriculture products like pesticides and other chemicals.

Extreme weather, fueled by climate change, also contributes to the breakdown and transport of agricultural plastics. Beating sun can wear on materials over time. And more frequent and intense rainfall events in some areas could drive more plastic particles running into fields and eventually waterways, said Maryam Salehi, an associate professor of civil and environmental engineering at the University of Missouri.

This past winter, leaders from around the world gathered in South Korea to produce the first legally binding global treaty on plastics pollution. They didn't reach an agreement, but the negotiations are scheduled to resume in August.

Neretin said the FAO produced a provisional, voluntary code of conduct on sustainable management of plastics in agriculture. But without a formal treaty in place, most countries don't have a strong incentive to follow it.

“The mood is certainly not cheery, that's for sure,” he said, adding global cooperation “takes time, but the problem does not disappear.”

Without political will, much of the onus falls on companies.

Rosgaard, of Greif, said that his company has worked to make their products recyclable, and that farmers have incentives to return them because they can get paid in exchange. But he added it's sometimes hard to prevent people from just burning the plastic or letting it end up in fields or waterways.

“We just don’t know where they end up all the time,” he said.

Some want to stop the flow of plastic and microplastic waste into ecosystems. Boluwatife Olubusoye, a PhD candidate at the University of Mississippi, is trying to see whether biochar, remains of organic matter and plant waste burned under controlled conditions, can filter out microplastics that run from farm fields into waterways. His early experiments have shown promise.

He said he was motivated by the feeling that there was “never any timely solution in terms of plastic waste" ending up in fields in the first place, especially in developing countries.

Even for farmers who care about plastics in soils, it can be challenging for them to do anything about it. In Uganda, owners of nursery beds cannot afford proper seedling trays, so they resort to cheaply made plastic bags used to germinate seeds, said Jacob Ogola, an independent agronomist there.

Farmers hardest hit by climate change are least able to reduce the presence of cheap plastic waste in soils. That frustrates Innocent Piloya, an agroecology entrepreneur who grows coffee in rural Uganda with her company Ribbo Coffee.

"It's like little farmers fighting plastic manufacturers,” she said.