Eerie Image Shows Spectacular Aftermath of a Large Star’s Death

An undated image shows a view of the orange and pink clouds that make up what remains after the explosive death of a massive star - the Vela supernova remnant. (ESO/VPHAS+ team/Cambridge Astronomical Survey Unit/Handout via Reuters)
An undated image shows a view of the orange and pink clouds that make up what remains after the explosive death of a massive star - the Vela supernova remnant. (ESO/VPHAS+ team/Cambridge Astronomical Survey Unit/Handout via Reuters)
TT
20

Eerie Image Shows Spectacular Aftermath of a Large Star’s Death

An undated image shows a view of the orange and pink clouds that make up what remains after the explosive death of a massive star - the Vela supernova remnant. (ESO/VPHAS+ team/Cambridge Astronomical Survey Unit/Handout via Reuters)
An undated image shows a view of the orange and pink clouds that make up what remains after the explosive death of a massive star - the Vela supernova remnant. (ESO/VPHAS+ team/Cambridge Astronomical Survey Unit/Handout via Reuters)

The aftermath of a large star's explosive death is seen in an image released on Monday by the European Southern Observatory, showing immense filaments of brightly shining gas that was blasted into space during the supernova.

Before exploding at the end of its life cycle, the star is believed to have had a mass at least eight times greater than our sun. It was located in our Milky Way galaxy about 800 light years from Earth in the direction of the constellation Vela. A light year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km).

The eerie image shows clouds of gas that look like pink and orange tendrils in the filters used by the astronomers, covering an expanse roughly 600 times larger than our solar system.

"The filamentary structure is the gas that was ejected from the supernova explosion, which created this nebula. We see the inside material of a star as it expands into space. When there are denser parts, some of the supernova material shocks with the surrounding gas and creates some of the filamentary structure," said Bruno Leibundgut, an astronomer affiliated with the European Southern Observatory (ESO).

The image shows the supernova remnants about 11,000 years after the explosion, Leibundgut said.

"Most of the material that shines is due to hydrogen atoms that are excited. The beauty of such images is that we can directly see what material was inside a star," Leibundgut added.

"The material that has been built up over many millions of years is now exposed and will cool down over millions of years until it eventually will form new stars. These supernovae produce many elements - calcium or iron - which we carry in our own bodies. This is a spectacular part of the path in the evolution of stars."

The star itself has been reduced in the aftermath of the supernova to an incredibly dense spinning object called a pulsar. A pulsar is a type of neutron star - one of the most compact celestial objects known to exist. This one rotates 10 times per second.

The image represented a mosaic of observations taken with a wide-field camera called OmegaCAM at the VLT Survey Telescope, hosted at the ESO's Paranal Observatory in Chile. The data for the image was collected from 2013 to 2016, the ESO said.



Google-Backed Coalition to Help Scale Ocean, Rock Carbon Removals

A Google logo is seen at a company research facility in Mountain View, California, US, May 13, 2025. (Reuters)
A Google logo is seen at a company research facility in Mountain View, California, US, May 13, 2025. (Reuters)
TT
20

Google-Backed Coalition to Help Scale Ocean, Rock Carbon Removals

A Google logo is seen at a company research facility in Mountain View, California, US, May 13, 2025. (Reuters)
A Google logo is seen at a company research facility in Mountain View, California, US, May 13, 2025. (Reuters)

A coalition backed by Google, Stripe and Shopify will spend $1.7 million to buy carbon removal credits from three early stage firms on behalf of the tech giants to help scale up the nascent markets, an executive told Reuters.

The world is expected to need to suck between five and 10 billion tons a year of carbon emissions out of the atmosphere by mid-century to reach its climate goals, yet at the moment most technologies are small scale.

The coalition, called Frontier, is also backed by H&M Group, JPMorgan Chase and Salesforce, among others.

The group, which aggregates demand from its members, will spend $1.7 million to buy credits from US-firm Karbonetiq, Italy-based Limenet and Canadian firm pHathom.

By contracting to buy early, the firms are better able to hire, raise finance and get the technologies off the ground, said Hannah Bebbington, head of deployment at Frontier.

"It allows companies to demonstrate commercial viability," she said.

Frontier's support for these early stage firms, which aim to lock emissions away in the ocean or in rocks and industrial waste, marks its fifth series of commitments.

Frontier, which was set up in 2022, aims to invest at least $1 billion in carbon removal credits between 2022 and 2030. It has already committed $600 million, some on the series of pre-purchases and the bulk on a series of off-take agreements with larger firms. Last week, it agreed to pay $41 million for 116,000 tons from waste biomass firm Arbor.

For oceans, the aim is to increase the alkalinity of the water, helping it to lock away more carbon emissions. This is often done by adding "quicklime", made from limestone.

For the mineralization technologies, meanwhile, projects attempt to speed up the process whereby rocks and industrial waste naturally absorb carbon dioxide, for example by crushing up the material to create a larger surface area.

Bebbington said both technologies had the potential to be impactful because they could be scaled quickly and cheaply.

"We think (they) are extremely compelling from that really cheap at really large scale perspective."