Scientists Are Racing to Discover the Depth of Ocean Damage Sparked by the LA Wildfires

Properties damaged by the Palisades Fire are seen from a coastline perspective Friday, Jan. 17, 2025 in Malibu, Calif. (AP)
Properties damaged by the Palisades Fire are seen from a coastline perspective Friday, Jan. 17, 2025 in Malibu, Calif. (AP)
TT

Scientists Are Racing to Discover the Depth of Ocean Damage Sparked by the LA Wildfires

Properties damaged by the Palisades Fire are seen from a coastline perspective Friday, Jan. 17, 2025 in Malibu, Calif. (AP)
Properties damaged by the Palisades Fire are seen from a coastline perspective Friday, Jan. 17, 2025 in Malibu, Calif. (AP)

On a recent Sunday, Tracy Quinn drove down the Pacific Coast Highway to assess damage wrought upon the coastline by the Palisades Fire.

The water line was darkened by ash. Burnt remnants of washing machines and dryers and metal appliances were strewn about the shoreline. Sludge carpeted the water's edge. Waves during high tide lapped onto charred homes, pulling debris and potentially toxic ash into the ocean as they receded.

"It was just heartbreaking," said Quinn, president and CEO of the environmental group Heal the Bay, whose team has reported ash and debris some 25 miles (40 kilometers) south of the Palisades burn area west of Los Angeles.

As crews work to remove potentially hundreds of thousands of tons of hazardous materials from the Los Angeles wildfires, researchers and officials are trying to understand how the fires on land have impacted the sea. The Palisades and Eaton fires scorched thousands of homes, businesses, cars and electronics, turning everyday items into hazardous ash made of pesticides, asbestos, plastics, lead, heavy metals and more.

Since much of it could end up in the Pacific Ocean, there are concerns and many unknowns about how the fires could affect life under the sea.

"We haven't seen a concentration of homes and buildings burned so close to the water," Quinn said.

Fire debris and potentially toxic ash could make the water unsafe for surfers and swimmers, especially after rainfall that can transport chemicals, trash and other hazards into the sea. Longer term, scientists worry if and how charred urban contaminants will affect the food supply.

The atmospheric river and mudslides that pummeled the Los Angeles region last week exacerbated some of those fears.

When the fires broke out in January, one of Mara Dias' first concerns was ocean water contamination. Strong winds were carrying smoke and ash far beyond the blazes before settling at sea, said the water quality manager for the Surfrider Foundation, an environmental nonprofit.

Scientists on board a research vessel during the fires detected ash and waste on the water as far as 100 miles (161 kilometers) offshore, said marine ecologist Julie Dinasquet with the University of California, San Diego’s Scripps Institution of Oceanography. Things like twigs and shard. They described the smell as electronics burning, she recalled, "not like a nice campfire."

Runoff from rains also are a huge and immediate concern. Rainfall picks up contaminants and trash while flushing toward the sea through a network of drains and rivers. That runoff could contain "a lot of nutrients, nitrogen and phosphate that end up in the ash of the burn material that can get into the water," said Dias, as well as "heavy metals, something called PAHs, which are given off when you burn different types of fuel."

Mudslides and debris flows in the Palisades Fire burn zone also can dump more hazardous waste into the ocean. After fires, the soil in burn scars is less able to absorb rainfall and can develop a layer that repels water from the remains of seared organic material. When there is less organic material to hold the soil in place, the risks of mudslides and debris flows increase.

Los Angeles County officials, with help from other agencies, have set thousands of feet of concrete barriers, sandbags, silt socks and more to prevent debris from reaching beaches. The LA County Board of Supervisors also recently passed a motion seeking state and federal help to expand beach clean ups, prepare for storm runoff and test ocean water for potential toxins and chemicals, among other things.

Beyond the usual samples, state water officials and others are testing for total and dissolved metals such as arsenic, lead and aluminum and volatile organic compounds.

They also are sampling for microplastics, polycyclic aromatic hydrocarbons, or PAHs, that are harmful to human and aquatic life, and polychlorinated biphenyls, or PCBs, a group of man-made chemicals shown to cause cancer in animals and other serious health effects. Now banned from being manufactured, they were used in products like pigments, paints and electrical equipment.

County public health officials said chemical tests of water samples last month did not raise health concerns, so they downgraded one beach closure to an ocean water advisory. Beachgoers were still advised to stay out of the water.

Dinasquet and colleagues are working to understand how far potentially toxic ash and debris dispersed across the ocean, how deep and how fast they sunk and, over time, where it ends up.

Forest fires can deposit important nutrients like iron and nitrogen into the ocean ecosystem, boosting the growth of phytoplankton, which can create a positive, cascading effect across the ecosystem. But the potentially toxic ash from urban coastal fires could have dire consequences, Dinasquet said.

"Reports are already showing that there was a lot of lead and asbestos in the ash," she added. "This is really bad for people so it's probably also very bad for the marine organisms."

A huge concern is whether toxic contaminants from the fire will enter the food chain. Researchers plan to take tissue fragments from fish for signs of heavy metals and contaminants. But they say it will take a while to understand how a massive urban fire will affect the larger ecosystem and our food supply.

Dias noted the ocean has long taken in pollution from land, but with fires and other disasters, "everything is compounded and the situation is even more dire."



Surprise Shark Caught on Camera for 1st Time in Antarctica’s Near-freezing Deep

In this image made from video and released by the University of Western Australia, a sleeper shark swims into the spotlight of a video camera in Antarctica in January 2025. (Minderoo-UWA Deep-Sea Research Centre, Inkfish, Kelpie Geoscience via AP)
In this image made from video and released by the University of Western Australia, a sleeper shark swims into the spotlight of a video camera in Antarctica in January 2025. (Minderoo-UWA Deep-Sea Research Centre, Inkfish, Kelpie Geoscience via AP)
TT

Surprise Shark Caught on Camera for 1st Time in Antarctica’s Near-freezing Deep

In this image made from video and released by the University of Western Australia, a sleeper shark swims into the spotlight of a video camera in Antarctica in January 2025. (Minderoo-UWA Deep-Sea Research Centre, Inkfish, Kelpie Geoscience via AP)
In this image made from video and released by the University of Western Australia, a sleeper shark swims into the spotlight of a video camera in Antarctica in January 2025. (Minderoo-UWA Deep-Sea Research Centre, Inkfish, Kelpie Geoscience via AP)

An ungainly barrel of a shark cruising languidly over a barren seabed far too deep for the sun’s rays to illuminate was an unexpected sight.

Many experts had thought sharks didn’t exist in the frigid waters of Antarctica before this sleeper shark lumbered warily and briefly into the spotlight of a video camera, researcher Alan Jamieson said this week. The shark, filmed in January 2025, was a substantial specimen with an estimated length of between 3 and 4 meters (10 and 13 feet).

“We went down there not expecting to see sharks because there’s a general rule of thumb that you don’t get sharks in Antarctica,” Jamieson said.

“And it’s not even a little one either. It’s a hunk of a shark. These things are tanks,” he added.

The camera operated by the Minderoo-UWA Deep-Sea Research Centre, which investigates life in the deepest parts of the world’s oceans, was positioned off the South Shetland Islands near the Antarctic Peninsula. That is well inside the boundaries of the Antarctic Ocean, also known as the Southern Ocean, which is defined as below the 60-degree south latitude line.

The center on Wednesday gave The Associated Press permission to publish the images.
The shark was 490 meters (1,608 feet) deep where the water temperature was a near-freezing 1.27 degrees Celsius (34.29 degrees Fahrenheit).

A skate appears in frame motionless on the seabed and seemingly unperturbed by the passing shark. The skate, a shark relative that looks like a stingray, was no surprise since scientists already knew their range extended that far south.

Jamieson, who is the founding director of the University of Western Australia-based research center, said he could find no record of another shark found in the Antarctic Ocean.

Peter Kyne, a Charles Darwin University conservation biologist independent of the research center, agreed that a shark had never before been recorded so far south.

Climate change and warming oceans could potentially be driving sharks to the Southern Hemisphere’s colder waters, but there was limited data on range changes near Antarctica because of the region’s remoteness, Kyne said.

The slow-moving sleeper sharks could have long been in Antarctica without anyone noticing, he said.

“This is great. The shark was in the right place, the camera was in the right place and they got this great footage,” Kyne said. “It’s quite significant.”

The sleeper shark population in the Antarctic Ocean was likely sparse and difficult for humans to detect, Jamieson said.

The photographed shark was maintaining a depth of around 500 meters (1,640 feet) along a seabed that sloped into much deeper water. The shark maintained that depth because that was the warmest layer of several water layers stacked upon each other to the surface, Jamieson said.

The Antarctic Ocean is heavily layered, or stratified, to a depth of around 1,000 meters (3,280 feet) because of conflicting properties including colder, denser water from below not readily mixing with fresh water running off melting ice from above.

Jamieson expects other Antarctic sharks live at the same depth, feeding on the carcasses of whales, giant squids and other marine creatures that die and sink to the bottom.

There are few research cameras positioned at that specific depth in Antarctic waters.

Those that are can only operate during the Southern Hemisphere summer months, from December through February.

“The other 75% of the year, no one’s looking at all. And so this is why, I think, we occasionally come across these surprises,” Jamieson said.


17th Century Wreck Reappears from Stockholm Deep

The remains of a 17th century shipwreck is pictured after resurfacing in Stockholm, Sweden, on February 17, 2026. (Photo by Jonathan NACKSTRAND / AFP)
The remains of a 17th century shipwreck is pictured after resurfacing in Stockholm, Sweden, on February 17, 2026. (Photo by Jonathan NACKSTRAND / AFP)
TT

17th Century Wreck Reappears from Stockholm Deep

The remains of a 17th century shipwreck is pictured after resurfacing in Stockholm, Sweden, on February 17, 2026. (Photo by Jonathan NACKSTRAND / AFP)
The remains of a 17th century shipwreck is pictured after resurfacing in Stockholm, Sweden, on February 17, 2026. (Photo by Jonathan NACKSTRAND / AFP)

A 17th century Swedish Navy shipwreck buried underwater in central Stockholm for 400 years has suddenly become visible due to unusually low Baltic Sea levels.

The wooden planks of the ship's well-preserved hull have since early February been peeking out above the surface of the water off the island of Kastellholmen, providing a clear picture of its skeleton.

"We have a shipwreck here, which was sunk on purpose by the Swedish Navy," Jim Hansson, a marine archeologist at Stockholm's Vrak - Museum of Wrecks, told AFP.

Hansson said experts believe that after serving in the navy, the ship was sunk around 1640 to use as a foundation for a new bridge to the island of Kastellholmen.

Archeologists have yet to identify the exact ship, as it is one of five similar wrecks lined up in the same area to form the bridge, all dating from the late 16th and early 17th centuries.

"This is a solution, instead of using new wood you can use the hull itself, which is oak" to build the bridge, Hansson said.

"We don't have shipworm here in the Baltic that eats the wood, so it lasts, as you see, for 400 years," he said, standing in front of the wreck.

Parts of the ship had already broken the surface in 2013, but never before has it been as visible as it is now, as the waters of the Baltic Sea reach their lowest level in about 100 years, according to the archaeologist.

"There has been a really long period of high pressure here around our area in the Nordics. So the water from the Baltic has been pushed out to the North Sea and the Atlantic," Hansson explained.

A research program dubbed "the Lost Navy" is underway to identify and precisely date the large number of Swedish naval shipwrecks lying on the bottom of the Baltic.


China Has Slashed Air Pollution, but the ‘War’ Isn’t Over 

This picture taken on February 11, 2026 shows pedestrians walking along an overpass as traffic snarls in Beijing. (AFP)
This picture taken on February 11, 2026 shows pedestrians walking along an overpass as traffic snarls in Beijing. (AFP)
TT

China Has Slashed Air Pollution, but the ‘War’ Isn’t Over 

This picture taken on February 11, 2026 shows pedestrians walking along an overpass as traffic snarls in Beijing. (AFP)
This picture taken on February 11, 2026 shows pedestrians walking along an overpass as traffic snarls in Beijing. (AFP)

Fifteen years ago, Beijing's Liangma riverbanks would have been smog-choked and deserted in winter, but these days they are dotted with families and exercising pensioners most mornings.

The turnaround is the result of a years-long campaign that threw China's state power behind policies like moving factories and electrifying vehicles, to improve some of the world's worst air quality.

Pollution levels in many Chinese cities still top the World Health Organization's (WHO) limits, but they have fallen dramatically since the "airpocalypse" days of the past.

"It used to be really bad," said Zhao, 83, soaking up the sun by the river with friends.

"Back then when there was smog, I wouldn't come out," she told AFP, declining to give her full name.

These days though, the air is "very fresh".

Since 2013, levels of PM2.5 -- small particulate that can enter the lungs and bloodstream -- have fallen 69.8 percent, Beijing municipality said in January.

Particulate pollution fell 41 percent nationwide in the decade from 2014, and average life expectancy has increased 1.8 years, according to the University of Chicago's Air Quality Life Index (AQLI).

China's rapid development and heavy coal use saw air quality decline dramatically by the 2000s, especially when cold winter weather trapped pollutants close to the ground.

There were early attempts to tackle the issue, including installing desulphurization technology at coal power plants, while factory shutdowns and traffic control improved the air quality for events like the 2008 Olympics.

But the impact was short-lived, and the problem worsened.

- Action plan -

Public awareness grew, heightened by factors like the US embassy in Beijing making monitoring data public.

By 2013, several international schools had installed giant inflatable domes around sport facilities to protect students.

That year, multiple episodes of prolonged haze shrouded Chinese cities, with one in October bringing northeastern Harbin to a standstill for days as PM2.5 levels hit 40 times the WHO's then-recommended standard.

The phrase "I'm holding your hand, but I can't see your face" took off online.

Later that year, an eight-year-old became the country's youngest lung cancer patient, with doctors directly blaming pollution.

As concerns mounted, China's ruling Communist Party released a ten-point action plan, declaring "a war against pollution".

It led to expanded monitoring, improved factory technology and the closure or relocation of coal plants and mines.

In big cities, vehicles were restricted and the groundwork was laid for widespread electrification.

For the first time, "quantitative air quality improvement goals for key regions within a clear time limit" were set, a 2016 study noted.

These targets were "the most important measure", said Bluetech Clean Air Alliance director Tonny Xie, whose non-profit worked with the government on the plan.

"At that time, there were a lot of debates about whether we can achieve it, because (they were) very ambitious," he told AFP.

The policy targeted several key regions, where PM2.5 levels fell rapidly between 2013 and 2017, and the approach was expanded nationwide afterwards.

"Everybody, I think, would agree that this is a miracle that was achieved in China," Xie said.

China's success is "entirely" responsible for a decline in global pollution since 2014, AQLI said last summer.

- 'Low-hanging fruits' gone -

Still, in much of China the air remains dangerous to breathe by WHO standards.

This winter, Chinese cities, including financial hub Shanghai, were regularly among the world's twenty most polluted on monitoring site IQAir.

Linda Li, a running coach who has lived in both Beijing and Shanghai, said air quality has improved, but she still loses up to seven running days to pollution in a good month.

A top environment official last year said China aimed to "basically eliminate severe air pollution by 2025", but the government did not respond when AFP asked if that goal had been met.

Official 2025 data found nationwide average PM2.5 concentrations decreased 4.4 percent on-year.

Eighty-eight percent of days featured "good" air quality.

However, China's current definition of "good" is PM2.5 levels of under 35 micrograms per cubic meter, significantly higher than the WHO's recommended five micrograms.

China wants to tighten the standard to 25 by 2035.

The last five years have also seen pollution reduction slow.

The "low-hanging fruits" are gone, said Chengcheng Qiu from the Center for Research on Energy and Clean Air (CREA).

Qiu's research suggests pollution is shifting west as heavy industry relocates to regions like Xinjiang, and that some cities in China have seen double-digit percentage increases in PM2.5 in the last five years.

"They can't just stop all industrial production. They need to find cleaner ways to produce the output," Qiu said.

There is hope for that, given China's status as a renewable energy powerhouse, with coal generation falling in 2025.

"Cleaner air ultimately rests on one clear direction," said Qiu.

"Move beyond fossil fuels and let clean energy power the next stage of development."