A Stroke Survivor Speaks Again with the Help of an Experimental Brain-Computer Implant

The scientists used a synthesizer they built using her voice before her injury to create a speech sound that she would have spoken. (Getty Images)
The scientists used a synthesizer they built using her voice before her injury to create a speech sound that she would have spoken. (Getty Images)
TT
20

A Stroke Survivor Speaks Again with the Help of an Experimental Brain-Computer Implant

The scientists used a synthesizer they built using her voice before her injury to create a speech sound that she would have spoken. (Getty Images)
The scientists used a synthesizer they built using her voice before her injury to create a speech sound that she would have spoken. (Getty Images)

Scientists have developed a device that can translate thoughts about speech into spoken words in real time.

Although it’s still experimental, they hope the brain-computer interface could someday help give voice to those unable to speak.

A new study described testing the device on a 47-year-old woman with quadriplegia who couldn’t speak for 18 years after a stroke. Doctors implanted it in her brain during surgery as part of a clinical trial.

It "converts her intent to speak into fluent sentences," said Gopala Anumanchipalli, a co-author of the study published Monday in the journal Nature Neuroscience.

Other brain-computer interfaces, or BCIs, for speech typically have a slight delay between thoughts of sentences and computerized verbalization. Such delays can disrupt the natural flow of conversation, potentially leading to miscommunication and frustration, researchers said.

This is "a pretty big advance in our field," said Jonathan Brumberg of the Speech and Applied Neuroscience Lab at the University of Kansas, who was not part of the study.

A team in California recorded the woman’s brain activity using electrodes while she spoke sentences silently in her brain. The scientists used a synthesizer they built using her voice before her injury to create a speech sound that she would have spoken. They trained an AI model that translates neural activity into units of sound.

It works similarly to existing systems used to transcribe meetings or phone calls in real time, said Anumanchipalli, of the University of California, Berkeley.

The implant itself sits on the speech center of the brain so that it’s listening in, and those signals are translated to pieces of speech that make up sentences. It’s a "streaming approach," Anumanchipalli said, with each 80-millisecond chunk of speech – about half a syllable – sent into a recorder.

"It’s not waiting for a sentence to finish," Anumanchipalli said. "It’s processing it on the fly."

Decoding speech that quickly has the potential to keep up with the fast pace of natural speech, said Brumberg. The use of voice samples, he added, "would be a significant advance in the naturalness of speech."

Though the work was partially funded by the National Institutes of Health, Anumanchipalli said it wasn't affected by recent NIH research cuts. More research is needed before the technology is ready for wide use, but with "sustained investments," it could be available to patients within a decade, he said.



French Scientists Find New Blood Type in Guadeloupe Woman

A French woman from the Caribbean island of Guadeloupe has been identified as the only known carrier of a new blood type. (AFP)
A French woman from the Caribbean island of Guadeloupe has been identified as the only known carrier of a new blood type. (AFP)
TT
20

French Scientists Find New Blood Type in Guadeloupe Woman

A French woman from the Caribbean island of Guadeloupe has been identified as the only known carrier of a new blood type. (AFP)
A French woman from the Caribbean island of Guadeloupe has been identified as the only known carrier of a new blood type. (AFP)

A French woman from the Caribbean island of Guadeloupe has been identified as the only known carrier of a new blood type, dubbed "Gwada negative," France's blood supply agency has announced.

The announcement was made 15 years after researchers received a blood sample from a patient who was undergoing routine tests ahead of surgery, the French Blood Establishment (EFS) said on Friday.

"The EFS has just discovered the 48th blood group system in the world!" the agency said in a statement on social network LinkedIn.

"This discovery was officially recognized in early June in Milan by the International Society of Blood Transfusion (ISBT)."

The scientific association had until now recognized 47 blood group systems.

Thierry Peyrard, a medical biologist at the EFS involved in the discovery, told AFP that a "very unusual" antibody was first found in the patient in 2011.

However, resources at the time did not allow for further research, he added.

Scientists were finally able to unravel the mystery in 2019 thanks to "high-throughput DNA sequencing", which highlighted a genetic mutation, Peyrard said.

The patient, who was 54 at the time and lived in Paris, was undergoing routine tests before surgery when the unknown antibody was detected, Peyrard said.

This woman "is undoubtedly the only known case in the world," said the expert.

"She is the only person in the world who is compatible with herself," he said.

Peyrard said the woman inherited the blood type from her father and mother, who each had the mutated gene.

The name "Gwada negative", which refers to the patient's origins and "sounds good in all languages", has been popular with the experts, said Peyrard.

The ABO blood group system was first discovered in the early 1900s. Thanks to DNA sequencing, the discovery of new blood groups has accelerated in recent years.

Peyrard and colleagues are now hoping to find other people with the same blood group.

"Discovering new blood groups means offering patients with rare blood types a better level of care," the EFS said.