‘A Real Time Difference’: Biomechanics of Running Shoes Help Tokyo Athletes Excel

Tokyo 2020 Olympics - Athletics - Men's 10000m - OLS - Olympic Stadium, Tokyo, Japan - July 30, 2021. Selemon Barega of Ethiopia celebrates after winning the final REUTERS/Lucy Nicholson
Tokyo 2020 Olympics - Athletics - Men's 10000m - OLS - Olympic Stadium, Tokyo, Japan - July 30, 2021. Selemon Barega of Ethiopia celebrates after winning the final REUTERS/Lucy Nicholson
TT

‘A Real Time Difference’: Biomechanics of Running Shoes Help Tokyo Athletes Excel

Tokyo 2020 Olympics - Athletics - Men's 10000m - OLS - Olympic Stadium, Tokyo, Japan - July 30, 2021. Selemon Barega of Ethiopia celebrates after winning the final REUTERS/Lucy Nicholson
Tokyo 2020 Olympics - Athletics - Men's 10000m - OLS - Olympic Stadium, Tokyo, Japan - July 30, 2021. Selemon Barega of Ethiopia celebrates after winning the final REUTERS/Lucy Nicholson

A mass of not only new world records, but also a slew of national records and startling personal bests since the 2016 Rio Olympics show athletes are thriving on new technology that has pushed the biomechanics of the running shoe to a new level.

When the Olympic athletics program started in Tokyo on July 30, some athletes were wearing the super-light shoes that contain a rigid plate and unique foam that lend a propulsive sensation to every stride.

Critics claim the shoes, first developed by Nike, are the equivalent of mechanical doping, while supporters hail them as a revolutionary advance after decades of stagnation.

"There seems to be an acceptance now that the new generation of shoes are part of the sport moving forward," Geoff Burns, a biomechanics and sport performance researcher at the University of Michigan and an expert in running shoe technology, told AFP.

"We definitely don't hear of people calling for the shoes to be banned so much anymore."

US-based journalist Brian Metzler, author of Kicksology: The Hype, Science, Culture and Cool of Running Shoes, said there was a broader acceptance, largely because "all brands have caught up to Nike and because there is a greater understanding of how the shoe technology works".

"The key factors in acceptance are making sure there is a fair playing field and also the notion that there is no additional energy being created by the shoes, but instead a greater return of energy from the force the runner is applying with each stride," Metzler told AFP.

Athletes, added Amby Burfoot, winner of the 1968 Boston Marathon and a former editor-in-chief of Runner's World magazine, "only care about running fast, and they have realized they must wear new shoes – from whatever company – if they are to keep up with the competition".

He said: "I doubt the general public cares very much about the shoes, or understands them. That leaves only the sports historians and sports statisticians to debate what they should do about the fast new performances."

'A real time difference'
The technology, which exists in 'flat' running shoes and in spikes, is approved by track and field's governing body, World Athletics, albeit with parameters set on foam thickness, among other things.

The designs "have proven that they allow a runner to be more efficient and that's a big change, especially from 800 meters to 10,000 meters," said Metzler.

"Some athletes have told me that the new spikes can provide a five to 15-second boost in the 5,000 meters, so that's a real time difference."

Burns said time was needed to understand the rarity of a performance, saying the sport was "still adapting to the faster times".

Letesenbet Gidey of Ethiopia was wearing the shoes when she broke the women's 10,000m world record in June. Her time of 29min, 1.03sec sliced over a minute off her previous best.

And Ugandan Joshua Cheptegei used the shoes to set the men's 5,000m world record of 12:35.36 last year.

"The way the fast performances in the distance and mid-distance races are celebrated by fans, announcers and the media is still likely overdone for their respective importance," said Burns.

"That is, the sport still hasn't completely recalibrated what's good and what's great. That will take a bit more time and more racing.

"I suspect by the end of next year, we'll be close, and by two years from now, we'll have a good feeling of what's truly an exceptional performance in the new era."

The more advanced technology is, Burns continued, the more it invites "complexity in the sport, for the athletes, fans and governing bodies"
.
Metzler added: "With running events, the die has been cast and we're already at a place where the new shoes have elevated human performance.

"Mostly that's a good thing, I think, but we must realize that a sub-13 minute 5,000m (for men) today is not the same as it was in the era of David Moorcroft, Said Aouita or Bob Kennedy" in past decades.

All three experts agreed many top athletes had not seen their form dip during the Covid-19 pandemic, saying many had benefited from the extra rest and training.

"Athletes are healthy, ready, eager, and wearing super shoes!" said Burfoot.



New Process for Stable, Long-Lasting Batteries

The image shows a test cell used to fabricate and test the all-solid-state battery developed at PSI. (Paul Scherrer Institute PSI/Mahir Dzambegovic) 
The image shows a test cell used to fabricate and test the all-solid-state battery developed at PSI. (Paul Scherrer Institute PSI/Mahir Dzambegovic) 
TT

New Process for Stable, Long-Lasting Batteries

The image shows a test cell used to fabricate and test the all-solid-state battery developed at PSI. (Paul Scherrer Institute PSI/Mahir Dzambegovic) 
The image shows a test cell used to fabricate and test the all-solid-state battery developed at PSI. (Paul Scherrer Institute PSI/Mahir Dzambegovic) 

Researchers at the Paul Scherrer Institute PSI have achieved a breakthrough on the path to practical application of lithium metal all-solid-state batteries.

The team expects the next generation of batteries to store more energy, are safer to operate, and charge faster than conventional lithium-ion batteries.

The team has reported these results in the journal Advanced Science.

All-solid-state batteries are considered a promising solution for electromobility, mobile electronics, and stationary energy storage – in part because they do not require flammable liquid electrolytes and therefore are inherently safer than conventional lithium-ion batteries.

Two key problems, however, stand in the way of market readiness: On the one hand, the formation of lithium dendrites at the anode remains a critical point.

On the other hand, an electrochemical instability – at the interface between the lithium metal anode and the solid electrolyte – can impair the battery’s long-term performance and reliability.

To overcome these two obstacles, the team led by Mario El Kazzi, head of the Battery Materials and Diagnostics group at the Paul Scherrer Institute PSI, developed a new production process:

“We combined two approaches that, together, both densify the electrolyte and stabilize the interface with the lithium,” the scientist explained.

Central to the PSI study is the argyrodite type LPSCl, a sulphide-based solid electrolyte made of lithium, phosphorus, and sulphur. The mineral exhibits high lithium-ion conductivity, enabling rapid ion transport within the battery – a crucial prerequisite for high performance and efficient charging processes.

To densify argyrodite into a homogeneous electrolyte, El Kazzi and his team did incorporate the temperature factor, but in a more careful way: Instead of the classic sintering process, they chose a gentler approach in which the mineral was compressed under moderate pressure and at a moderate temperature of only about 80 degrees Celsius.

The result is a compact, dense microstructure resistant to the penetration of lithium dendrites. Already, in this form, the solid electrolyte is ideally suited for rapid lithium-ion transport.

To ensure reliable operation even at high current densities, such as those encountered during rapid charging and discharging, the all-solid-state cell required further modification.

For this purpose, a coating of lithium fluoride (LiF), only 65 nanometres thick, was evaporated under vacuum and applied uniformly to the lithium surface – serving as a ultra-thin passivation layer at the interface between the anode and the solid electrolyte.

In laboratory tests with button cells, the battery demonstrated extraordinary performance under demanding conditions.

“Its cycle stability at high voltage was remarkable,” said doctoral candidate Jinsong Zhang, lead author of the study.

After 1,500 charge and discharge cycles, the cell still retained approximately 75% of its original capacity.

This means that three-quarters of the lithium ions were still migrating from the cathode to the anode. “An outstanding result. These values are among the best reported to date.”

Zhang therefore sees a good chance that all-solid-state batteries could soon surpass conventional lithium-ion batteries with liquid electrolyte in terms of energy density and durability.

Thus El Kazzi and his team have demonstrated for the first time that the combination of solid electrolyte mild sintering and a thin passivation layer on lithium anode effectively suppresses both dendrite formation and interfacial instability.

This combined solution marks an important advance for all-solid-state battery research – not least because it offers ecological and economic advantages: Due to the low temperatures, the process saves energy and therefore costs.

“Our approach is a practical solution for the industrial production of argyrodite-based all-solid-state batteries,” said El Kazzi. “A few more adjustments – and we could get started.”


Meta Urges Australia to Change Teen Social Media Ban

Meta has called for Australia's social media for under-16s to target app stores. Saeed KHAN / AFP
Meta has called for Australia's social media for under-16s to target app stores. Saeed KHAN / AFP
TT

Meta Urges Australia to Change Teen Social Media Ban

Meta has called for Australia's social media for under-16s to target app stores. Saeed KHAN / AFP
Meta has called for Australia's social media for under-16s to target app stores. Saeed KHAN / AFP

Tech giant Meta urged Australia on Monday to rethink its world-first social media ban for under-16s, while reporting that it has blocked more than 544,000 accounts under the new law.

Australia has required big platforms including Meta, TikTok and YouTube to stop underage users from holding accounts since the legislation came into force on December 10 last year.

Companies face fines of Aus $49.5 million (US$33 million) if they fail to take "reasonable steps" to comply.

Billionaire Mark Zuckerberg's Meta said it had removed 331,000 underage accounts from Instagram, 173,000 from Facebook, and 40,000 from Threads in the week to December 11.

The company said it was committed to complying with the law.

"That said, we call on the Australian government to engage with industry constructively to find a better way forward, such as incentivizing all of industry to raise the standard in providing safe, privacy-preserving, age appropriate experiences online, instead of blanket bans," it said in statement.

Meta renewed an earlier call for app stores to be required to verify people's ages and get parental approval before under-16s can download an app.

This was the only way to avoid a "whack-a-mole" race to stop teens migrating to new apps to avoid the ban, the company said.

The government said it was holding social media companies to account for the harm they cause young Australians.

"Platforms like Meta collect a huge amount of data on their users for commercial purposes. They can and must use that information to comply with Australian law and ensure people under 16 are not on their platforms," a government spokesperson said.

Meta said parents and experts were worried about the ban isolating young people from online communities, and driving some to less regulated apps and darker corners of the internet.

Initial impacts of the legislation "suggest it is not meeting its objectives of increasing the safety and well-being of young Australians", it said.

While raising concern over the lack of an industry standard for determining age online, Meta said its compliance with the Australian law would be a "multilayered process".

Since the ban, the California-based firm said it had helped found the OpenAge Initiative, a non-profit group that has launched age-verification tools called AgeKeys to be used with participating platforms.


China Is Closing in on US Technology Lead Despite Constraints, AI Researchers Say

 Visitors look at robots on display at robotics company Unitree's first retail store in Beijing in January 9, 2026. (AFP)
Visitors look at robots on display at robotics company Unitree's first retail store in Beijing in January 9, 2026. (AFP)
TT

China Is Closing in on US Technology Lead Despite Constraints, AI Researchers Say

 Visitors look at robots on display at robotics company Unitree's first retail store in Beijing in January 9, 2026. (AFP)
Visitors look at robots on display at robotics company Unitree's first retail store in Beijing in January 9, 2026. (AFP)

China can narrow its technological gap with the US driven by growing risk-taking and innovation, though the lack of advanced chipmaking tools is hobbling the sector, the country's leading artificial intelligence researchers said on Saturday.

China's so-called "AI tiger" startups MiniMax and Zhipu AI had strong debuts on the Hong Kong Stock Exchange this week, reflecting growing confidence in the sector as Beijing fast-tracks AI and chip listings to bolster domestic alternatives to advanced US technology.

Yao Shunyu, a former senior researcher at ChatGPT maker OpenAI ‌who was named ‌technology giant Tencent's chief AI scientist in December, ‌said ⁠there was a ‌high likelihood of a Chinese firm becoming the world's leading AI company in the next three to five years but said the lack of advanced chipmaking machines was the main technical hurdle.

"Currently, we have a significant advantage in electricity and infrastructure. The main bottlenecks are production capacity, including lithography machines, and the software ecosystem," Yao said at an AI conference in Beijing.

China has completed a working prototype of an extreme-ultraviolet lithography ⁠machine potentially capable of producing cutting-edge semiconductor chips that rival the West's, Reuters reported last month. However, the ‌machine has not yet produced working chips and may ‍not do so until 2030, people with ‍knowledge of the matter told Reuters.

MIND THE INVESTMENT GAP

Yao and other ‍Chinese industry leaders at the Beijing conference on Saturday also acknowledged that the US maintains an advantage in computing power due to its hefty investments in infrastructure.

"The US computer infrastructure is likely one to two orders of magnitude larger than ours. But I see that whether it's OpenAI or other platforms, they're investing heavily in next-generation research," said Lin Junyang, technical lead for Alibaba's flagship Qwen large language model.

"We, ⁠on the other hand, are relatively strapped for cash; delivery alone likely consumes the majority of our computer infrastructure," Lin said during a panel discussion at the AGI-Next Frontier Summit held by the Beijing Key Laboratory of Foundational Models at Tsinghua University.

Lin said China's limited resources have spurred its researchers to be innovative, particularly through algorithm-hardware co-design, which enables AI firms to run large models on smaller, inexpensive hardware.

Tang Jie, founder of Zhipu AI which raised HK$4.35 billion in its IPO, also highlighted the willingness of younger Chinese AI entrepreneurs to embrace high-risk ventures - a trait traditionally associated with Silicon Valley - as a positive development.

"I think if we can improve this environment, ‌allowing more time for these risk-taking, intelligent individuals to engage in innovative endeavors ... this is something our government and the country can help improve," said Tang.