From Algorithms to AI: A 25-Year Journey of Human Advancement

A facial recognition system using AI. Getty
A facial recognition system using AI. Getty
TT

From Algorithms to AI: A 25-Year Journey of Human Advancement

A facial recognition system using AI. Getty
A facial recognition system using AI. Getty

Over the past 25 years, technological innovation has accelerated unprecedentedly, transforming societies worldwide. Historically, technologies like electricity and the telephone took decades to reach 25% of US households—46 and 35 years respectively. In stark contrast, the internet did so in just seven years. Platforms like Facebook gained 50 million users in two years, Netflix redefined media consumption rapidly, and ChatGPT attracted over a million users in merely five days. This rapid adoption underscores both technological advancements and a societal shift in embracing innovation.

Leading this wave was Google, a startup founded in a garage. In 1998, Google introduced the PageRank algorithm, revolutionizing web information organization. Unlike traditional search engines focusing on keyword frequency, PageRank assessed page importance by analyzing interlinking, treating hyperlinks as votes of confidence and capturing collective internet wisdom. Finding relevant information became faster and more intuitive, making Google’s search engine indispensable globally.

Amid the data revolution, a new computing paradigm emerged: machine learning. Developers began creating algorithms that learn from data and improve over time, moving away from explicit programming. Netflix exemplified this shift with its 2006 prize offering $1 million for a 10% improvement in its recommendation algorithm. In 2009, BellKor’s Pragmatic Chaos succeeded using advanced machine learning, highlighting the power of adaptive algorithms.

Researchers then delved into deep learning, a subset of machine learning involving algorithms learning from vast unstructured data. In 2011, IBM’s Watson showcased deep learning’s power on “Jeopardy!” Competing against champions Brad Rutter and Ken Jennings, Watson demonstrated an ability to understand complex language nuances, puns, and riddles, securing victory. This significant demonstration of AI’s language processing paved the way for numerous natural language processing applications.

In 2016, Google DeepMind’s AlphaGo achieved a historic milestone by defeating Go world champion Lee Sedol. Go, known for its complexity and intuitive thinking, had been beyond AI’s reach. AlphaGo’s victory astonished the world, signaling that AI could tackle problems requiring strategic thinking through neural networks.

As AI capabilities grew, businesses began integrating these technologies to innovate. Amazon revolutionized retail by harnessing AI for personalized shopping. By analyzing customers’ habits, Amazon’s algorithms recommended products accurately, streamlined logistics, and optimized inventory. Personalization became a cornerstone of Amazon’s success, setting new customer service expectations.

In the automotive sector, Tesla led in integrating AI into consumer products. With Autopilot, Tesla offered a glimpse into transportation’s future. Initially, Autopilot used AI to process data from cameras and sensors, enabling adaptive cruise control, lane centering, and self-parking. By 2024, Full Self-Driving (FSD) allowed cars to navigate with minimal human intervention. This leap redefined driving and accelerated efforts to develop self-driving vehicles like Waymo’s.

Healthcare also witnessed AI’s transformative impact. Researchers developed algorithms detecting patterns in imaging data imperceptible to humans. For example, an AI system analyzed mammograms to identify subtle changes predictive of cancer, enabling earlier interventions and potentially saving lives.

In 2020, DeepMind’s AlphaFold achieved a breakthrough: accurately predicting protein structures from amino acid sequences—a challenge that had eluded scientists for decades. Understanding protein folding is crucial for drug discovery and disease research. DeepMind’s spin-off, Isomorphic Labs, is leveraging the latest AlphaFold models and partnering with major pharmaceutical companies to accelerate biomedical research, potentially leading to new treatments at an unprecedented pace.

The finance industry quickly embraced AI. PayPal implemented advanced algorithms to detect and prevent fraud in real time, building trust in digital payments. High-frequency trading firms utilized algorithms executing trades in fractions of a second. Companies like Renaissance Technologies used machine learning for trading strategies, achieving remarkable returns. Algorithmic trading now accounts for a significant portion of trading volume, increasing efficiency but raising concerns about market stability, as seen in the 2010 Flash Crash.

In 2014, Ian Goodfellow and colleagues developed Generative Adversarial Networks (GANs), consisting of two neural networks—the generator and discriminator—that compete against each other. This dynamic enabled creating highly realistic synthetic data, including images and videos. GANs have generated lifelike human faces, created art, and assisted in medical imaging by producing synthetic data for training, enhancing diagnostic models’ robustness.

In 2017, Transformer architectures introduced a significant shift in AI methodology, fundamentally changing natural language processing. Developed by Google Brain researchers, Transformers moved away from traditional recurrent and convolutional neural networks. They rely entirely on attention mechanisms to capture global dependencies, allowing efficient parallelization and handling longer contexts.

Building on this, OpenAI developed the Generative Pre-trained Transformer (GPT) series. GPT-3, released in 2020, demonstrated unprecedented capabilities in generating human-like text and understanding context. Unlike previous models requiring task-specific training, GPT-3 could perform a wide range of language tasks with minimal fine-tuning, showcasing the power of large-scale unsupervised pre-training and few-shot learning. Businesses began integrating GPT models into applications from content creation and code generation to customer service. Currently, multiple models are racing to achieve “artificial general intelligence” (AGI) that understands, reasons, and creates content superior to humans.

The journey from algorithms to AI over the past 25 years is a testament to the seemingly limitless human curiosity, creativity, and relentless pursuit of progress. We’ve moved from basic algorithms to sophisticated AI systems that understand language, interpret complex data, and exhibit creativity. Exponential growth in computational power, big data, and breakthroughs in machine learning have accelerated AI development at an unimaginable pace.

Looking ahead, predicting the next 25 years is challenging. As AI advances, it may unlock solutions to challenges we perceive as insurmountable—from curing diseases and solving energy problems to mitigating climate change and exploring deep space. AI’s potential to revolutionize every aspect of our lives is vast. While the exact trajectory is uncertain, the fusion of human ingenuity and AI promises a future rich with possibilities. One wonders when and where the next Google or OpenAI may emerge and what significant good it may bring to the world!



New Car Sales in Spain Surpass Million-mark, Sector Facing Tough 2025

An aerial view shows new vehicles parked at the port in Barcelona, Spain, December 7, 2024. REUTERS/Jon Nazca/File Photo
An aerial view shows new vehicles parked at the port in Barcelona, Spain, December 7, 2024. REUTERS/Jon Nazca/File Photo
TT

New Car Sales in Spain Surpass Million-mark, Sector Facing Tough 2025

An aerial view shows new vehicles parked at the port in Barcelona, Spain, December 7, 2024. REUTERS/Jon Nazca/File Photo
An aerial view shows new vehicles parked at the port in Barcelona, Spain, December 7, 2024. REUTERS/Jon Nazca/File Photo

New car sales in Spain surpassed the one million mark in 2024 for the first time since the COVID-19 pandemic, data showed on Thursday, but analysts and industry sources said this should not be seen as a sign of recovery in a sector facing a tough 2025.

Changing trends in car usage, high prices, uncertainty around electric vehicles (EVs) and fierce competition from Chinese brands are all expected to create challenges for the auto industry in Spain, said Felipe Munoz, an analyst at market research firm JATO Dynamics.

New car sales in 2019 reached well over 1.3 million, but then slumped to around 900,000 annually for the next four years. Though 2024's 1.02 million sales represent a 7.1% increase year-on-year, they are still far below the original trend, Reuters reported.

Last year's rise was helped by a massive 28.8% spike in year-on-year sales in December, the data showed.

Munoz said the uptick seemed transitory, as new car sales had failed to properly take off after the pandemic clobbered demand, adding: "I don't think (the Spanish car market) will ever hit those numbers again."

According to Munoz, after the semiconductor scarcity crisis, European car manufacturers focused on increasing their prices at the cost of selling fewer units - and still made record profits.

"That strategy worked perfectly for them until this year, when Chinese brands started to penetrate the market more successfully in Europe, and they realised their prices were too high in comparison," he added.

Spanish car part manufacturer Gestamp was less affected by a drop in car sales in Spain and Europe due to its geographic diversification, CFO Ignacio Mosquera said, but more had to be done to help an ailing sector that lacked a clear policy in "one of the most important industry overhauls in history".

"If there's no public-private partnership, there's uncertainty in demand and people don't know which vehicle to buy. Faced with that decision, what do they do? They extend the life of their vehicle," Mosquera said - thus reducing sales.

Echoing that sentiment, the head of Spanish car part manufacturers' association Sernauto, Jose Portilla, said more state support was needed to encourage the sale of EVs.

"If we're able to boost the recharging infrastructure, EVs become more affordable, and the subsidies are given at the time of purchase instead of one-and-a-half or two years later. This will encourage the market much more and we'll be able to redirect this situation," Portilla added.