Plastics Are Seeping into Farm Fields, Food and Eventually Human Bodies. Can They Be Stopped?

Alexandra Water Warriors volunteers cleanup the Juksei river in the heart of Alexandra township from plastic pollution in Johannesburg, South Africa, Nov. 27, 2024. (AP)
Alexandra Water Warriors volunteers cleanup the Juksei river in the heart of Alexandra township from plastic pollution in Johannesburg, South Africa, Nov. 27, 2024. (AP)
TT

Plastics Are Seeping into Farm Fields, Food and Eventually Human Bodies. Can They Be Stopped?

Alexandra Water Warriors volunteers cleanup the Juksei river in the heart of Alexandra township from plastic pollution in Johannesburg, South Africa, Nov. 27, 2024. (AP)
Alexandra Water Warriors volunteers cleanup the Juksei river in the heart of Alexandra township from plastic pollution in Johannesburg, South Africa, Nov. 27, 2024. (AP)

In Uganda's Mbale district, famous for its production of arabica coffee, a plague of plastic bags locally known as buveera is creeping beyond the city.

It's a problem that has long littered the landscape in Kampala, the capital, where buveera are woven into the fabric of daily life. They show up in layers of excavated dirt roads and clog waterways. But now, they can be found in remote areas of farmland, too. Some of the debris includes the thick plastic bags used for planting coffee seeds in nurseries.

Some farmers are complaining, said Wilson Watira, head of a cultural board for the coffee-growing Bamasaba people. “They are concerned – those farmers who know the effects of buveera on the land,” he said.

Around the world, plastics find their way into farm fields. Climate change makes agricultural plastic, already a necessity for many crops, even more unavoidable for some farmers.

Meanwhile, research continues to show that itty-bitty microplastics alter ecosystems and end up in human bodies. Scientists, farmers and consumers all worry about how that's affecting human health, and many seek solutions. But industry experts say it’s difficult to know where plastic ends up or get rid of it completely, even with the best intentions of reuse and recycling programs.

According to a 2021 report on plastics in agriculture by the United Nations Food and Agriculture Organization, soils are one of the main receptors of agricultural plastics. Some studies have estimated that soils are more polluted by microplastics than the oceans.

“These things are being released at such a huge, huge scale that it’s going to require major engineering solutions,” said Sarah Zack, an Illinois-Indiana Sea Grant Great Lakes Contaminant Specialist who communicates about microplastics to the public.

Micro-particles of plastic that come from items like clothes, medications and beauty products sometimes appear in fertilizer made from the solid byproducts of wastewater treatment — called biosolids — which can also be smelly and toxic to nearby residents depending on the treatment process used. Some seeds are coated in plastic polymers designed to strategically disintegrate at the right time of the season, used in containers to hold pesticides or stretched over fields to lock in moisture.

But the agriculture industry itself only accounts for a little over three percent of all plastics used globally. About 40% of all plastics are used in packaging, including single-use plastic food and beverage containers.

Microplastics, which the National Oceanic and Atmospheric Administration defines as being smaller than five millimeters long, are their largest at about the size of a pencil eraser. Some are much smaller.

Studies have already shown that microplastics can be taken up by plants on land or plankton in the ocean and subsequently eaten by animals or humans. Scientists are still studying the long-term effects of the plastic that's been found in human organs, but early findings suggest possible links to a host of health conditions including heart disease and some cancers.

Despite “significant research gaps,” the evidence related to the land-based food chain “is certainly raising alarm,” said Lev Neretin, environment lead at the FAO, which is currently working on another technical report looking deeper into the problem of microplastic pollution in soils and crops.

A study out this month in the Proceedings of the National Academy of Sciences found that microplastics pollution can even impact plants' ability to photosynthesize, the process by which they turn light from the sun into energy. That doesn't “justify excessive concern” but does “underscore food security risks that necessitate scientific attention,” wrote Fei Dang, one of the study's authors.

The use of plastics has quadrupled over the past 30 years. Plastic is ubiquitous. And most of the world's plastic goes to landfills, pollutes the environment or is burned. Less than 10% of plastics are recycled.

At the same time, some farmers are becoming more reliant on plastics to shelter crops from the effects of extreme weather. They're using tarps, hoop houses and other technology to try to control conditions for their crops. And they're depending more on chemicals like pesticides and fertilizers to buffer against unreliable weather and more pervasive pest issues.

“Through global warming, we have less and less arable land to make crops on. But we need more crops. So therefore the demand on agricultural chemicals is increasing,” said Ole Rosgaard, president and CEO of Greif, a company that makes packaging used for industrial agriculture products like pesticides and other chemicals.

Extreme weather, fueled by climate change, also contributes to the breakdown and transport of agricultural plastics. Beating sun can wear on materials over time. And more frequent and intense rainfall events in some areas could drive more plastic particles running into fields and eventually waterways, said Maryam Salehi, an associate professor of civil and environmental engineering at the University of Missouri.

This past winter, leaders from around the world gathered in South Korea to produce the first legally binding global treaty on plastics pollution. They didn't reach an agreement, but the negotiations are scheduled to resume in August.

Neretin said the FAO produced a provisional, voluntary code of conduct on sustainable management of plastics in agriculture. But without a formal treaty in place, most countries don't have a strong incentive to follow it.

“The mood is certainly not cheery, that's for sure,” he said, adding global cooperation “takes time, but the problem does not disappear.”

Without political will, much of the onus falls on companies.

Rosgaard, of Greif, said that his company has worked to make their products recyclable, and that farmers have incentives to return them because they can get paid in exchange. But he added it's sometimes hard to prevent people from just burning the plastic or letting it end up in fields or waterways.

“We just don’t know where they end up all the time,” he said.

Some want to stop the flow of plastic and microplastic waste into ecosystems. Boluwatife Olubusoye, a PhD candidate at the University of Mississippi, is trying to see whether biochar, remains of organic matter and plant waste burned under controlled conditions, can filter out microplastics that run from farm fields into waterways. His early experiments have shown promise.

He said he was motivated by the feeling that there was “never any timely solution in terms of plastic waste" ending up in fields in the first place, especially in developing countries.

Even for farmers who care about plastics in soils, it can be challenging for them to do anything about it. In Uganda, owners of nursery beds cannot afford proper seedling trays, so they resort to cheaply made plastic bags used to germinate seeds, said Jacob Ogola, an independent agronomist there.

Farmers hardest hit by climate change are least able to reduce the presence of cheap plastic waste in soils. That frustrates Innocent Piloya, an agroecology entrepreneur who grows coffee in rural Uganda with her company Ribbo Coffee.

"It's like little farmers fighting plastic manufacturers,” she said.



17th Century Wreck Reappears from Stockholm Deep

The remains of a 17th century shipwreck is pictured after resurfacing in Stockholm, Sweden, on February 17, 2026. (Photo by Jonathan NACKSTRAND / AFP)
The remains of a 17th century shipwreck is pictured after resurfacing in Stockholm, Sweden, on February 17, 2026. (Photo by Jonathan NACKSTRAND / AFP)
TT

17th Century Wreck Reappears from Stockholm Deep

The remains of a 17th century shipwreck is pictured after resurfacing in Stockholm, Sweden, on February 17, 2026. (Photo by Jonathan NACKSTRAND / AFP)
The remains of a 17th century shipwreck is pictured after resurfacing in Stockholm, Sweden, on February 17, 2026. (Photo by Jonathan NACKSTRAND / AFP)

A 17th century Swedish Navy shipwreck buried underwater in central Stockholm for 400 years has suddenly become visible due to unusually low Baltic Sea levels.

The wooden planks of the ship's well-preserved hull have since early February been peeking out above the surface of the water off the island of Kastellholmen, providing a clear picture of its skeleton.

"We have a shipwreck here, which was sunk on purpose by the Swedish Navy," Jim Hansson, a marine archeologist at Stockholm's Vrak - Museum of Wrecks, told AFP.

Hansson said experts believe that after serving in the navy, the ship was sunk around 1640 to use as a foundation for a new bridge to the island of Kastellholmen.

Archeologists have yet to identify the exact ship, as it is one of five similar wrecks lined up in the same area to form the bridge, all dating from the late 16th and early 17th centuries.

"This is a solution, instead of using new wood you can use the hull itself, which is oak" to build the bridge, Hansson said.

"We don't have shipworm here in the Baltic that eats the wood, so it lasts, as you see, for 400 years," he said, standing in front of the wreck.

Parts of the ship had already broken the surface in 2013, but never before has it been as visible as it is now, as the waters of the Baltic Sea reach their lowest level in about 100 years, according to the archaeologist.

"There has been a really long period of high pressure here around our area in the Nordics. So the water from the Baltic has been pushed out to the North Sea and the Atlantic," Hansson explained.

A research program dubbed "the Lost Navy" is underway to identify and precisely date the large number of Swedish naval shipwrecks lying on the bottom of the Baltic.


China Has Slashed Air Pollution, but the ‘War’ Isn’t Over 

This picture taken on February 11, 2026 shows pedestrians walking along an overpass as traffic snarls in Beijing. (AFP)
This picture taken on February 11, 2026 shows pedestrians walking along an overpass as traffic snarls in Beijing. (AFP)
TT

China Has Slashed Air Pollution, but the ‘War’ Isn’t Over 

This picture taken on February 11, 2026 shows pedestrians walking along an overpass as traffic snarls in Beijing. (AFP)
This picture taken on February 11, 2026 shows pedestrians walking along an overpass as traffic snarls in Beijing. (AFP)

Fifteen years ago, Beijing's Liangma riverbanks would have been smog-choked and deserted in winter, but these days they are dotted with families and exercising pensioners most mornings.

The turnaround is the result of a years-long campaign that threw China's state power behind policies like moving factories and electrifying vehicles, to improve some of the world's worst air quality.

Pollution levels in many Chinese cities still top the World Health Organization's (WHO) limits, but they have fallen dramatically since the "airpocalypse" days of the past.

"It used to be really bad," said Zhao, 83, soaking up the sun by the river with friends.

"Back then when there was smog, I wouldn't come out," she told AFP, declining to give her full name.

These days though, the air is "very fresh".

Since 2013, levels of PM2.5 -- small particulate that can enter the lungs and bloodstream -- have fallen 69.8 percent, Beijing municipality said in January.

Particulate pollution fell 41 percent nationwide in the decade from 2014, and average life expectancy has increased 1.8 years, according to the University of Chicago's Air Quality Life Index (AQLI).

China's rapid development and heavy coal use saw air quality decline dramatically by the 2000s, especially when cold winter weather trapped pollutants close to the ground.

There were early attempts to tackle the issue, including installing desulphurization technology at coal power plants, while factory shutdowns and traffic control improved the air quality for events like the 2008 Olympics.

But the impact was short-lived, and the problem worsened.

- Action plan -

Public awareness grew, heightened by factors like the US embassy in Beijing making monitoring data public.

By 2013, several international schools had installed giant inflatable domes around sport facilities to protect students.

That year, multiple episodes of prolonged haze shrouded Chinese cities, with one in October bringing northeastern Harbin to a standstill for days as PM2.5 levels hit 40 times the WHO's then-recommended standard.

The phrase "I'm holding your hand, but I can't see your face" took off online.

Later that year, an eight-year-old became the country's youngest lung cancer patient, with doctors directly blaming pollution.

As concerns mounted, China's ruling Communist Party released a ten-point action plan, declaring "a war against pollution".

It led to expanded monitoring, improved factory technology and the closure or relocation of coal plants and mines.

In big cities, vehicles were restricted and the groundwork was laid for widespread electrification.

For the first time, "quantitative air quality improvement goals for key regions within a clear time limit" were set, a 2016 study noted.

These targets were "the most important measure", said Bluetech Clean Air Alliance director Tonny Xie, whose non-profit worked with the government on the plan.

"At that time, there were a lot of debates about whether we can achieve it, because (they were) very ambitious," he told AFP.

The policy targeted several key regions, where PM2.5 levels fell rapidly between 2013 and 2017, and the approach was expanded nationwide afterwards.

"Everybody, I think, would agree that this is a miracle that was achieved in China," Xie said.

China's success is "entirely" responsible for a decline in global pollution since 2014, AQLI said last summer.

- 'Low-hanging fruits' gone -

Still, in much of China the air remains dangerous to breathe by WHO standards.

This winter, Chinese cities, including financial hub Shanghai, were regularly among the world's twenty most polluted on monitoring site IQAir.

Linda Li, a running coach who has lived in both Beijing and Shanghai, said air quality has improved, but she still loses up to seven running days to pollution in a good month.

A top environment official last year said China aimed to "basically eliminate severe air pollution by 2025", but the government did not respond when AFP asked if that goal had been met.

Official 2025 data found nationwide average PM2.5 concentrations decreased 4.4 percent on-year.

Eighty-eight percent of days featured "good" air quality.

However, China's current definition of "good" is PM2.5 levels of under 35 micrograms per cubic meter, significantly higher than the WHO's recommended five micrograms.

China wants to tighten the standard to 25 by 2035.

The last five years have also seen pollution reduction slow.

The "low-hanging fruits" are gone, said Chengcheng Qiu from the Center for Research on Energy and Clean Air (CREA).

Qiu's research suggests pollution is shifting west as heavy industry relocates to regions like Xinjiang, and that some cities in China have seen double-digit percentage increases in PM2.5 in the last five years.

"They can't just stop all industrial production. They need to find cleaner ways to produce the output," Qiu said.

There is hope for that, given China's status as a renewable energy powerhouse, with coal generation falling in 2025.

"Cleaner air ultimately rests on one clear direction," said Qiu.

"Move beyond fossil fuels and let clean energy power the next stage of development."


Sydney Man Jailed for Mailing Reptiles in Popcorn Bags 

Investigators recovered 101 Australian reptiles from parcels destined for Hong Kong, South Korea, Sri Lanka and Romania. (AFP file)
Investigators recovered 101 Australian reptiles from parcels destined for Hong Kong, South Korea, Sri Lanka and Romania. (AFP file)
TT

Sydney Man Jailed for Mailing Reptiles in Popcorn Bags 

Investigators recovered 101 Australian reptiles from parcels destined for Hong Kong, South Korea, Sri Lanka and Romania. (AFP file)
Investigators recovered 101 Australian reptiles from parcels destined for Hong Kong, South Korea, Sri Lanka and Romania. (AFP file)

A Sydney man who tried to post native lizards, dragons and other reptiles out of Australia in bags of popcorn and biscuit tins has been sentenced to eight years in jail, authorities said Tuesday.

The eight-year term handed down on Friday was a record for wildlife smuggling, federal environment officials said.

A district court in Sydney gave the man, 61-year-old Neil Simpson, a non-parole period of five years and four months.

Investigators recovered 101 Australian reptiles from seized parcels destined for Hong Kong, South Korea, Sri Lanka and Romania, the officials said in a statement.

The animals -- including shingleback lizards, western blue-tongue lizards, bearded dragons and southern pygmy spiny-tailed skinks -- were posted in 15 packages between 2018 and 2023.

"Lizards, skinks and dragons were secured in calico bags. These bags were concealed in bags of popcorn, biscuit tins and a women's handbag and placed inside cardboard boxes," the statement said.

The smuggler had attempted to get others to post the animals on his behalf but was identified by government investigators and the New South Wales police, it added.

Three other people were convicted for taking part in the crime.

The New South Wales government's environment department said that "the illegal wildlife trade is not a victimless crime", harming conservation and stripping the state "and Australia of its unique biodiversity".